博客
关于我
Federated Learning 联邦学习
阅读量:277 次
发布时间:2019-03-01

本文共 370 字,大约阅读时间需要 1 分钟。

1. 引言

当前联邦学习(Federated Learning)作为一种保护数据隐私的机器学习范式,受到了广泛的关注和应用。为了帮助研究人员和开发者更好地理解和应用这一技术,我们将简要介绍几款主流的联邦学习框架,并分析其特点和优势。

参考资料

在探讨联邦学习框架时,我们可以参考以下开源资源: [1] 微众银行:作为国内领先的金融科技公司,微众银行在联邦学习领域的研究和实践具有重要贡献。 [2] OpenMined:由OpenMined开源社区维护,涵盖了丰富的联邦学习工具和框架,适合研究人员和开发者使用。

[3] TensorFlow Federated:由谷歌团队开发,这一框架以其高效的接口和强大的扩展性著称,适用于多种实际场景。

[4] PaddleFL:由百度推出,兼具开源灵活性和高性能,支持多种深度学习模型的联邦学习任务。

转载地址:http://hwqx.baihongyu.com/

你可能感兴趣的文章
OAuth2:项目演示-模拟微信授权登录京东
查看>>
OA系统多少钱?OA办公系统中的价格选型
查看>>
OA系统选型:选择好的工作流引擎
查看>>
OA让企业业务流程管理科学有“据”
查看>>
OA项目之我的会议(会议排座&送审)
查看>>
OA项目之我的会议(查询)
查看>>
Object c将一个double值转换为时间格式
查看>>
object detection之Win10配置
查看>>
object detection训练自己数据
查看>>
object detection错误Message type "object_detection.protos.SsdFeatureExtractor" has no field named "bat
查看>>
object detection错误之Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
查看>>
object detection错误之no module named nets
查看>>
Object of type 'ndarray' is not JSON serializable
查看>>
Object Oriented Programming in JavaScript
查看>>
object references an unsaved transient instance - save the transient instance before flushing
查看>>
Object.keys()的详解和用法
查看>>
OBJECTIVE C (XCODE) 绘图功能简介(转载)
查看>>
Objective-C ---JSON 解析 和 KVC
查看>>
Objective-C 编码规范
查看>>
Objective-C——判断对象等同性
查看>>