博客
关于我
Federated Learning 联邦学习
阅读量:277 次
发布时间:2019-03-01

本文共 370 字,大约阅读时间需要 1 分钟。

1. 引言

当前联邦学习(Federated Learning)作为一种保护数据隐私的机器学习范式,受到了广泛的关注和应用。为了帮助研究人员和开发者更好地理解和应用这一技术,我们将简要介绍几款主流的联邦学习框架,并分析其特点和优势。

参考资料

在探讨联邦学习框架时,我们可以参考以下开源资源: [1] 微众银行:作为国内领先的金融科技公司,微众银行在联邦学习领域的研究和实践具有重要贡献。 [2] OpenMined:由OpenMined开源社区维护,涵盖了丰富的联邦学习工具和框架,适合研究人员和开发者使用。

[3] TensorFlow Federated:由谷歌团队开发,这一框架以其高效的接口和强大的扩展性著称,适用于多种实际场景。

[4] PaddleFL:由百度推出,兼具开源灵活性和高性能,支持多种深度学习模型的联邦学习任务。

转载地址:http://hwqx.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0060---Tcp长连接和短连接_Http长连接和短连接_UDP长连接和短连接
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty常见组件二
查看>>
netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
查看>>
Netty核心模块组件
查看>>
Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
查看>>
Netty源码—2.Reactor线程模型一
查看>>
Netty源码—4.客户端接入流程一
查看>>
Netty源码—4.客户端接入流程二
查看>>
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>