博客
关于我
Federated Learning 联邦学习
阅读量:277 次
发布时间:2019-03-01

本文共 370 字,大约阅读时间需要 1 分钟。

1. 引言

当前联邦学习(Federated Learning)作为一种保护数据隐私的机器学习范式,受到了广泛的关注和应用。为了帮助研究人员和开发者更好地理解和应用这一技术,我们将简要介绍几款主流的联邦学习框架,并分析其特点和优势。

参考资料

在探讨联邦学习框架时,我们可以参考以下开源资源: [1] 微众银行:作为国内领先的金融科技公司,微众银行在联邦学习领域的研究和实践具有重要贡献。 [2] OpenMined:由OpenMined开源社区维护,涵盖了丰富的联邦学习工具和框架,适合研究人员和开发者使用。

[3] TensorFlow Federated:由谷歌团队开发,这一框架以其高效的接口和强大的扩展性著称,适用于多种实际场景。

[4] PaddleFL:由百度推出,兼具开源灵活性和高性能,支持多种深度学习模型的联邦学习任务。

转载地址:http://hwqx.baihongyu.com/

你可能感兴趣的文章
NPOI
查看>>
NPOI之Excel——合并单元格、设置样式、输入公式
查看>>
NPOI初级教程
查看>>
NPOI利用多任务模式分批写入多个Excel
查看>>
NPOI在Excel中插入图片
查看>>
NPOI将某个程序段耗时插入Excel
查看>>
NPOI格式设置
查看>>
NPOI设置单元格格式
查看>>
Npp删除选中行的Macro录制方式
查看>>
NR,NF,FNR
查看>>
nrf24l01+arduino
查看>>
nrf开发笔记一开发软件
查看>>
nrm —— 快速切换 NPM 源 (附带测速功能)
查看>>
nrm报错 [ERR_INVALID_ARG_TYPE]
查看>>
NS3 IP首部校验和
查看>>
NSDateFormatter的替代方法
查看>>
NSError 的使用方法
查看>>
NSGA-Ⅲ源代码
查看>>
nsis 安装脚本示例(转)
查看>>
NSJSON的用法(oc系统自带的解析方法)
查看>>